Today I was at a school and before going to work with some kindergarten classes, I had a spare 20 minutes to fill. I went into a Grade 4 class to challenge them with this puzzle that we shared on our @DCDSBMath Twitter feed from a few weeks ago:
The students were given whiteboards and told to get cracking!
And get cracking they did. What I found interesting at first was that they all worked from the top down: they split the 20 into two numbers and worked from there. When I have given this puzzle to adults, I have seen them work from the bottom row upwards. I'm not sure what to make of this!
Initially, some students hadn't noticed that they need to use four different numbers on the bottom row:
A quick reminder of what was required on the bottom row got them back on track. Excitement was evident as the students eagerly showed me a solution. I often found myself saying "Great! I've not seen that one yet. Now find a different one."
There were some mistakes on the way, but these were mainly caught by the students and, because we were using the whiteboards, these were corrected with minimum fuss. I was particularly impressed with these solutions:
I wasn't expecting to see negative numbers being used without prompting!
What I liked about this task is how quickly the students took to it and how much it provoked their thinking. At the same time it got them to use their number sense especially to decompose numbers in different ways. Next time, I would use a larger target value in the top brick to allow them to practice their mental arithmetic for adding and subtracting two-digit numbers.
A Math(s) teacher from Yorkshire, now working in Ontario and always learning about how students best learn Math(s).
Wednesday, December 20, 2017
Monday, November 20, 2017
Using Lego to Build Fractions
Having seen the occasional tweet about using Lego to teach fractions, I was curious as to how effective this might be. Today I tried this for the first time with some Grade 4 students. These are students who have not yet learned about equivalence but have learned about unit fractions and how we can use this knowledge to label fractions.
I worked in the school's Learning Commons and made use of the Lego board that was placed on the wall.
Each pair of students had there own board and a tub of Lego blocks to work with. I started by asking them to find a 2-by-4 block and to fix that to their board. Then I asked students to find a block, or blocks, that was one-half of the original block. Some chose a 2-by-2 block, others chose two 2-by-2 blocks. We also had students use a 1-by-4 block or four 1-by-1 blocks.
In a similar way, I asked students to show me what one-fourth (or one-quarter) might look like. As I listened to the students think there way through this, it became clear that even though they might know the fraction words 'half' or 'fourth', that they did not necessarily know how this connected to the number of parts needed to make a whole. Indeed, when we tried to do some skip counting by fourths as a class, I could tell that there was some uncertainty. To clarify this, I gave them the following challenge:
If a 2-by-4 block is one whole, build seven-halves and tell me another way to say this.
As they did this, I moved from group to group and modelled some skip counting aloud with them:
"One half, two halves, three halves, four halves, five halves, six halves, seven halves."
Now we could use a 2-by-4 block to show that this was equivalent to 3 and one-half:
The students seemed to like this visual 'proof'.
The next challenge was to build twelve-halves and to find what this was equivalent to. The students were able to do this more quickly now and tell me the correct answer. If some students put all their blocks together like this:
we suggested that that their work might be more clear if they leave a gap between each whole:
Finally, we asked them to build six-fourths and to find out what this is equivalent to. Again, they were able to build this quickly:
Some students argued that this was one-and-one-half. Others argued that it was the same as one-and-two-quarters. Then one student suggested that it this meant that one-half was the same as two-quarters.
BINGO!
I seized on this idea: "Who agrees with this suggestion?"
Everyone did. Unfortunately, the bell rang for recess but it gave me plenty to think about what happened in the lesson and what the students are now ready for. I liked working with the Lego mainly because it was easy for the students to organise their thinking: once the blocks were placed, they stayed put and didn't get knocked all over the place. In fact, I could pick up one student's work and easily show the whole group.
One drawback of using Lego is that the fractions that you can use are somewhat limited, so I would have to think more carefully about what models and blocks I could use to show thirds, fifths, sixths, tenths etc.
I actually did a similar activity at a Parent Council meeting for one our elementary schools last week but with pattern blocks. I showed the parents a hexagon and asked them to show me what one-third of this was. After they confirmed it was the blue rhombus, I challenged them to build eight-thirds and to then tell me another way of saying this. Once they had lined up eight of these rhombii, they carefully arranged six of these into two hexagons and were able to tell me that eight-thirds is equivalent to 2 and two-thirds. A number of parents actually said "That's why it works!" It was a perfect moment to show them the power of the Concrete-Diagrammatic-Symbolic continuum and how we can use this to develop students' understanding of fractions:
My overall learning of this is then as follows:
1) Equivalence is a key concept in fractional understanding. Without it, fractional computations are built on shaky foundations. Students need to develop this knowledge of equivalence initially through concrete activities before moving on to diagrammatic and thence symbolic activities.
2) Skip counting with fractions is an important prerequisite for developing an understanding of equivalence. Again, this should be developed concretely first before moving on to diagrammatically (number lines) and then symbolically.
I worked in the school's Learning Commons and made use of the Lego board that was placed on the wall.
In a similar way, I asked students to show me what one-fourth (or one-quarter) might look like. As I listened to the students think there way through this, it became clear that even though they might know the fraction words 'half' or 'fourth', that they did not necessarily know how this connected to the number of parts needed to make a whole. Indeed, when we tried to do some skip counting by fourths as a class, I could tell that there was some uncertainty. To clarify this, I gave them the following challenge:
If a 2-by-4 block is one whole, build seven-halves and tell me another way to say this.
As they did this, I moved from group to group and modelled some skip counting aloud with them:
"One half, two halves, three halves, four halves, five halves, six halves, seven halves."
Now we could use a 2-by-4 block to show that this was equivalent to 3 and one-half:
The students seemed to like this visual 'proof'.
The next challenge was to build twelve-halves and to find what this was equivalent to. The students were able to do this more quickly now and tell me the correct answer. If some students put all their blocks together like this:
we suggested that that their work might be more clear if they leave a gap between each whole:
Finally, we asked them to build six-fourths and to find out what this is equivalent to. Again, they were able to build this quickly:
Some students argued that this was one-and-one-half. Others argued that it was the same as one-and-two-quarters. Then one student suggested that it this meant that one-half was the same as two-quarters.
BINGO!
I seized on this idea: "Who agrees with this suggestion?"
Everyone did. Unfortunately, the bell rang for recess but it gave me plenty to think about what happened in the lesson and what the students are now ready for. I liked working with the Lego mainly because it was easy for the students to organise their thinking: once the blocks were placed, they stayed put and didn't get knocked all over the place. In fact, I could pick up one student's work and easily show the whole group.
One drawback of using Lego is that the fractions that you can use are somewhat limited, so I would have to think more carefully about what models and blocks I could use to show thirds, fifths, sixths, tenths etc.
I actually did a similar activity at a Parent Council meeting for one our elementary schools last week but with pattern blocks. I showed the parents a hexagon and asked them to show me what one-third of this was. After they confirmed it was the blue rhombus, I challenged them to build eight-thirds and to then tell me another way of saying this. Once they had lined up eight of these rhombii, they carefully arranged six of these into two hexagons and were able to tell me that eight-thirds is equivalent to 2 and two-thirds. A number of parents actually said "That's why it works!" It was a perfect moment to show them the power of the Concrete-Diagrammatic-Symbolic continuum and how we can use this to develop students' understanding of fractions:
My overall learning of this is then as follows:
1) Equivalence is a key concept in fractional understanding. Without it, fractional computations are built on shaky foundations. Students need to develop this knowledge of equivalence initially through concrete activities before moving on to diagrammatic and thence symbolic activities.
2) Skip counting with fractions is an important prerequisite for developing an understanding of equivalence. Again, this should be developed concretely first before moving on to diagrammatically (number lines) and then symbolically.
Wednesday, October 25, 2017
Exploding Dots and Math Bumps
Last week saw the end of the first ever Global Math Week and what a successful week it was: over 2 million teachers and students took part! I am proud to have been an ambassador for this and to have brought the joy of exploding dots to many teachers and students. If you haven't heard about James Tanton's Exploding Dots then you need to check out this site. Basically, exploding dots are a way of visualising a journey of mathematical ideas from primary to senior grades.
In preparation for Global Math Week, my colleague, Dan Allen, and I held a number of sessions for interested teachers to introduce them to the idea of exploding dots and how they could incorporate this into one of their lessons that week:
For Global Math Week itself, I went into Grade 2, 3, 4, and 7 classes. The students really liked the idea that they were part of a worldwide event and that they were solving the same problems as students in Australia, China, India, Germany, Tanzania or wherever they had friends and relatives.
I started with simple 2 to 1 and 3 to 1 machines. Here, a grade 4 student is writing 7 using a 2 to 1 machine. Listen to all the kabooms happening in this clip:
We quickly learned that we can't use our normal number words to describe our results so instead of saying "One hundred eleven" we said "one, one, one". Then we used a 10 to 1 machine and found out that twenty-three could be written as...23! Here, I could explain to students that nearly all of the math they have learned so far has been in a 10 to 1 machine so in this case we could use our number words 'twenty three'.
For the Grade 4 and 7 students, I then tried a 3 to 2 machine.
Kabooms galore! It was neat to see the students taking care to make sure that they did the explosions correctly and checking with each other to see if they got the same result. Where they were discrepancies, they sought to convince each other of the correct answer.
Finally for the Grade 7s, I tried an operation with them using a 3 to 1 machine:
This they did with no further instructions from me:
From a personal point of view, there is something about Exploding Dots that brings out a beauty I'd never considered in polynomial division. When Sunil Singh first introduced us to exploding dots last year, he challenged us to do 1÷(1–x) and 1÷(1-x^2) using this method. Even though I knew how to do these using more conventional methods, I was gobsmacked by the visuals produced:
I tweeted my excitement to James Tanton who then sent me another challenge. When I got stuck into this, something so surprising and wonderful happened, that I experienced what can only be described as 'Math Bumps':
Joyous maths indeed.
My sincere thanks go to James Tanton and all at the Global Math Project for helping to spread joyous math everywhere.
In preparation for Global Math Week, my colleague, Dan Allen, and I held a number of sessions for interested teachers to introduce them to the idea of exploding dots and how they could incorporate this into one of their lessons that week:
For Global Math Week itself, I went into Grade 2, 3, 4, and 7 classes. The students really liked the idea that they were part of a worldwide event and that they were solving the same problems as students in Australia, China, India, Germany, Tanzania or wherever they had friends and relatives.
I started with simple 2 to 1 and 3 to 1 machines. Here, a grade 4 student is writing 7 using a 2 to 1 machine. Listen to all the kabooms happening in this clip:
For the Grade 4 and 7 students, I then tried a 3 to 2 machine.
Kabooms galore! It was neat to see the students taking care to make sure that they did the explosions correctly and checking with each other to see if they got the same result. Where they were discrepancies, they sought to convince each other of the correct answer.
Finally for the Grade 7s, I tried an operation with them using a 3 to 1 machine:
This they did with no further instructions from me:
I tweeted my excitement to James Tanton who then sent me another challenge. When I got stuck into this, something so surprising and wonderful happened, that I experienced what can only be described as 'Math Bumps':
Joyous maths indeed.
My sincere thanks go to James Tanton and all at the Global Math Project for helping to spread joyous math everywhere.
Monday, September 25, 2017
Fun for All the Family
I'm always on the look out for math problems that can be used with people of any age. These puzzles are usually easy to explain but not so easy (or obvious) to solve. Here is one that I recently created and posted on our board's Math Twitter account (@DCDSBMath) that has proved popular with kids and adults alike.
To clarify: you can use any number of pieces to make a rectangle so right from the get go it has multiple entry points.
I gave this task to our principals and Math Lead teachers this week and as they worked through it, I was struck by the energy in the room. First two pieces were put together to make rectangles
then three:
and then the question was asked, "Is it possible to use all six pieces?" I put on my best enigmatic smile and said, "Perhaps!" With no immediate solution obvious, these adults had to persist at trying different arrangements. Snippets of conversations from each table showed some common ground to the thinking going on:
"Are we allowed to flip the shapes?"
"How big must the rectangle be?"
"Either 6 by 4 or 3 by 8."
Then, around the room, shouts of delight went up and high fives abounded as different solutions were found.
When I made this puzzle, I did so knowing that this solution could yield a second solution.
As we moved from table to table airplaying the solutions, I was pleasantly surprised to see some I had not thought about. These two are a nice variation of each other:
As are these two:
But this one really toasted my crumpet:
Which of course begs the question: Can we find all the solutions? I'll leave that up to the reader to figure out.
A question arose during the session as to how to make this task more accessible to students who might have a visual-processing LD. One possible accommodation might be to colour-code the pieces and provide a template for them like this:
What I like about this problem is that not only is it great for developing spatial reasoning, it is one that can be attempted by adults and children alike: it is a problem that would be great for families to do together! And if you like problems such as this, then you will also love games such as Blokus and Kanoodle.
Or for those of you of a certain age, Tetris!
To clarify: you can use any number of pieces to make a rectangle so right from the get go it has multiple entry points.
I gave this task to our principals and Math Lead teachers this week and as they worked through it, I was struck by the energy in the room. First two pieces were put together to make rectangles
then three:
and then the question was asked, "Is it possible to use all six pieces?" I put on my best enigmatic smile and said, "Perhaps!" With no immediate solution obvious, these adults had to persist at trying different arrangements. Snippets of conversations from each table showed some common ground to the thinking going on:
"Are we allowed to flip the shapes?"
"How big must the rectangle be?"
"Either 6 by 4 or 3 by 8."
Then, around the room, shouts of delight went up and high fives abounded as different solutions were found.
When I made this puzzle, I did so knowing that this solution could yield a second solution.
As we moved from table to table airplaying the solutions, I was pleasantly surprised to see some I had not thought about. These two are a nice variation of each other:
As are these two:
But this one really toasted my crumpet:
Which of course begs the question: Can we find all the solutions? I'll leave that up to the reader to figure out.
A question arose during the session as to how to make this task more accessible to students who might have a visual-processing LD. One possible accommodation might be to colour-code the pieces and provide a template for them like this:
What I like about this problem is that not only is it great for developing spatial reasoning, it is one that can be attempted by adults and children alike: it is a problem that would be great for families to do together! And if you like problems such as this, then you will also love games such as Blokus and Kanoodle.
Or for those of you of a certain age, Tetris!
Wednesday, September 13, 2017
More Than One Way to Crack an Egg
Last week I posted this photo onto my Twitter account and it received a lot of interest:
I often am asked to help out with the initial Math assessment for students who have come from different countries into our board. These were two solutions from two different students, both from Vietnam. The first thing that struck me was that these methods were completely new to me:
Many folk agreed. Others still wondered why these methods were chosen. I agreed with Matt Dunbar that my preferred method would be this:
My mantra has always been: 'First, isolate the variable'. Yet this is not what these students did. Other folk wondered, in the case of the student on the right, what the student was thinking:
I often am asked to help out with the initial Math assessment for students who have come from different countries into our board. These were two solutions from two different students, both from Vietnam. The first thing that struck me was that these methods were completely new to me:
Many folk agreed. Others still wondered why these methods were chosen. I agreed with Matt Dunbar that my preferred method would be this:
My mantra has always been: 'First, isolate the variable'. Yet this is not what these students did. Other folk wondered, in the case of the student on the right, what the student was thinking:
So this week, I happened to see this student again and asked him if we would be happy to do some more questions for me. Fortunately, he was happy to help! Here's the first question I gave:
OK, so this tells me that his very first solution wasn't a one off: this 'first get-a-common-denominator' approach is a go-to strategy for him. I next gave him this question:
So now I see he is also paying attention to the numerator of the fraction in the first line. But still, he uses the 'first get-a-common-denominator' approach. I was now curious as to what he would do with a simpler equation:
So in this case, he does isolate the variable first: verrrry interrrresting! But now I want to see what he does when there is more than one denominator:
At this point, I am grinning like a Cheshire cat. What a neat way of solving this! When I asked him if everyone learns this method in his Vietnamese school, he replied that they did. So I showed him how I would have solved these (isolate first, then get rid of the denominators) and it was nice to see him smile and nod and say "Cool!"
I love it when I see something new like this. It reminds me that what we take for 'standard' here might not be standard everywhere. That doesn't mean to say that I will change the way I do these types of questions myself (I still like 'my' way!) but knowing that there is more than one way to crack an egg will help me as a teacher help students who might not get 'my' way.
Friday, June 23, 2017
Summer Math
With many students getting ready for the summer break, there are also many parents wondering how they can keep their sons' and daughters' entertained for six weeks and more. I am one of those parents! So here are some math-based ideas to try that are not only fun but will also help keep math skills honed until September.
Dice Games
Three words: Shut-the-Box. Farkle. Yahtzee.
OK, that might be five words but who's counting? These are great games for any age and are a wonderful way of getting students to practice their number sense. I particularly like Shut-the-Box: it is something I have played over a cup of tea with my children in a Tim Hortons.
Card Games
These can range from simple games like Snap, Pairs or Marilyn Burns's Oh No 99! game to more complicated games like Euchre and (my favourite) Cribbage. Playing these games necessarily involves using Math: from simple comparing of numbers (Snap) to more complicated decision making (in Cribbage, which of these two cards should I put in my opponent's box?)
You can also practice your math facts by playing a 'War' type game with cards. Split a pack of cards evenly between two people. Each player then simultaneously turns over the top card of their deck and places it on the table next to the other player's card. The first player to call out the total of the two cards gets to keep the cards. Keep playing until all the cards are used up. This game can be adapted so players have to get the product of the two cards, or to treat black cards as positive and red cards as negative and to get the total or product of these integers.
Spatial Reasoning Games
Math is more than number sense so it's important to work on our spatial reasoning. Kanoodle is probably one of the most engaging puzzles that I know of and has been a huge hit with any kid (and adult) that I've shared it with.
Other great games include Tantrix...
And if you want something for your tablet, I highly recommend the app Flow Free.
Puzzles
Try a yohaku puzzle each day!
For older students, try one of the many from the yohaku website or Twitter feed @yohakupuzzle. Or, if you have younger kids, create your own and leave them on the fridge!
I'd also recommend kakuro and KenKen puzzles. There is also the 100 Day Challenge at brilliant.org as well as the Math Before Bed site for younger kids.
Road Trip Math
If you are going on a road trip, then get your kids involved with this! Show them a map of your route. Better still, print off a copy of the map and mark on your location every hour and to note how many kilometres you have travelled: this might help kids answer their favourite question: "When are we going to get there?" Make a note of gas prices on your route: are they more expensive or less expensive than where you live? When you fill up with gas, mark the location on your map. How many litres did you pump in? Using your map, how far do you think you will go before you need to fill up again.
Sporting Math
If your child are following their favourite team, get them to collect data of how their team is doing. From simple bar charts to keep track of wins/losses to more detailed things such as number of runs/hits, batting averages etc. If you are watching a game or a sporting event, casually ask your children questions like:
Or if you are going to watch the World Athletic championships in London, how about a question like "Who do you think will win: Bolt or De Grasse? By how much?"
BBQ Math
There are even opportunities to practice math when you are having a barbecue. From simple questions like "How many burgers are on the grill? How many will there be when I flip them over?" to using a meat thermometer to measure the temperature of the chicken breasts (we don't want to eat undercooked chicken, do we?!)
Hope that you have fun using these ideas!
Dice Games
Three words: Shut-the-Box. Farkle. Yahtzee.
OK, that might be five words but who's counting? These are great games for any age and are a wonderful way of getting students to practice their number sense. I particularly like Shut-the-Box: it is something I have played over a cup of tea with my children in a Tim Hortons.
Card Games
These can range from simple games like Snap, Pairs or Marilyn Burns's Oh No 99! game to more complicated games like Euchre and (my favourite) Cribbage. Playing these games necessarily involves using Math: from simple comparing of numbers (Snap) to more complicated decision making (in Cribbage, which of these two cards should I put in my opponent's box?)
You can also practice your math facts by playing a 'War' type game with cards. Split a pack of cards evenly between two people. Each player then simultaneously turns over the top card of their deck and places it on the table next to the other player's card. The first player to call out the total of the two cards gets to keep the cards. Keep playing until all the cards are used up. This game can be adapted so players have to get the product of the two cards, or to treat black cards as positive and red cards as negative and to get the total or product of these integers.
Spatial Reasoning Games
Math is more than number sense so it's important to work on our spatial reasoning. Kanoodle is probably one of the most engaging puzzles that I know of and has been a huge hit with any kid (and adult) that I've shared it with.
Other great games include Tantrix...
...and Pentago.
And if you want something for your tablet, I highly recommend the app Flow Free.
Puzzles
Try a yohaku puzzle each day!
For older students, try one of the many from the yohaku website or Twitter feed @yohakupuzzle. Or, if you have younger kids, create your own and leave them on the fridge!
I'd also recommend kakuro and KenKen puzzles. There is also the 100 Day Challenge at brilliant.org as well as the Math Before Bed site for younger kids.
Road Trip Math
If you are going on a road trip, then get your kids involved with this! Show them a map of your route. Better still, print off a copy of the map and mark on your location every hour and to note how many kilometres you have travelled: this might help kids answer their favourite question: "When are we going to get there?" Make a note of gas prices on your route: are they more expensive or less expensive than where you live? When you fill up with gas, mark the location on your map. How many litres did you pump in? Using your map, how far do you think you will go before you need to fill up again.
Sporting Math
If your child are following their favourite team, get them to collect data of how their team is doing. From simple bar charts to keep track of wins/losses to more detailed things such as number of runs/hits, batting averages etc. If you are watching a game or a sporting event, casually ask your children questions like:
- By how many runs/goals/points are we winning?
- How many runs/goals/points have been scored in total?
- Have we had more running yards or passing yards?
- How many minutes are left?
Or if you are going to watch the World Athletic championships in London, how about a question like "Who do you think will win: Bolt or De Grasse? By how much?"
BBQ Math
There are even opportunities to practice math when you are having a barbecue. From simple questions like "How many burgers are on the grill? How many will there be when I flip them over?" to using a meat thermometer to measure the temperature of the chicken breasts (we don't want to eat undercooked chicken, do we?!)
Hope that you have fun using these ideas!
Subscribe to:
Posts (Atom)